A prediction study of warfarin individual stable dose after mechanical heart valve replacement: adaptive neural-fuzzy inference system prediction
نویسندگان
چکیده
BACKGROUND It's difficult but urgent to achieve the individualized rational medication of the warfarin, we aim to predict the individualized warfarin stable dose though the artificial intelligent Adaptive neural-fuzzy inference system (ANFIS). METHODS Our retrospective analysis based on a clinical database, involving 21,863 patients from 15 Chinese provinces who receive oral warfarin after the heart valve replacement. They were allocated into four groups: the external validation group (A group), the internal validation group (B group), training group (C group) and stratified training group (D group). We used a univariate analysis of general linear models(GLM-univariate) to select the input variables and construct two prediction models by the ANFIS with the training and stratified training group, and then verify models with two validation groups by the mean squared error(MSE), mean absolute error(MAE) and the ideal predicted percentage. RESULTS A total of 13,639 eligible patients were selected, including 1639 in A group, 3000 in B group, 9000 in C group, and 3192 in D group. Nine input variables were selected out and two five-layered ANFIS models were built. ANFIS model achieved the highest total ideal predicted percentage 63.7%. In the dose subgroups, all the models performed best in the intermediate-dose group with the ideal predicted percentage 82.4~ 86.4%, and the use of the stratified training group slightly increased the prediction accuracy in low-dose group by 8.8 and 5.2%, respectively. CONCLUSION As a preliminary attempt, ANFIS model predicted the warfarin stable dose properly after heart valve surgery among Chinese, and also proved that Chinese need lower anticoagulation intensity INR (1.5-2.5) to warfarin by reference to the recommended INR (2.5-3.5) in the developed countries.
منابع مشابه
The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier
The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...
متن کاملApplication of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...
متن کاملCoastal Water Level Prediction Model Using Adaptive Neuro-fuzzy Inference System
This paper employs Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict water level that leads to flood in coastal areas. ANFIS combines the verbal power of fuzzy logic and numerical power of neural network for its action. Meteorological and astronomical data of Santa Monica, a coastal area in California, U. S. A., were obtained. A portion of the data was used to train the ANFIS network, wh...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملPrediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018